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Preface

Structured derivations is a method that supports the construction, presentation
and understanding of mathematical arguments. The method works equally well
for mathematical proofs and algebraic and arithmetic calculations as for geometric
constructions and general problem solving, and it is useful whenever the presentation
of a solution requires several consecutive steps. It has been used at different levels
of mathematics, from lower secondary school to university level and research. The
method is based on a fixed form to present mathematical arguments and the use
of simple logical notation in the arguments. The fixed form makes it easier to to
understand proofs and calculations and to check that they are correct.

The aim of this guide is to show how structured derivations can be used in upper
secondary school level mathematics education. The method is described with ex-
amples that step by step introduce new features and concepts. This guide is an
expanded English version of a previous manual, Matematiikkaa logiikan avulla: Jo-
hdatus rakenteisiin päättelyketjuihin (Ralph-Johan Back, TUCS Lecture Notes 10,
2008).
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Chapter 1
Introduction

This is a tutorial for structured derivations. Structured derivations are written in a
fixed format that shows the overall structure of the mathematical argument and how
the different parts of the argument are connected to each other. The presentation
format demands that each step of a derivation is explicitly justified, i.e., a reason
must be given for why the step is mathematically correct. Basic logical symbols
are used explicitly in derivations, to speed up the argumentation and show the
logical structure of a proposition. This is similar to how arithmetic and algebraic
notation is used in algebraic manipulations. Structured derivations provide a unified
presentation format for different kinds of mathematical reasoning: proofs, arithmetic
and algebraic calculations, geometric proofs, solutions to verbal problems, and so on.
The method is suitable for all levels of mathematics, from lower secondary school to
university teaching and research.

The aim of this guide is to provide an overview of structured derivations using
examples taken from high school math. Features of the method are introduced one
at a time, and are illustrated with a number of examples. Reading the text does not
require any other background information than traditional high school mathematics.
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Chapter 2
Structured Tasks

A structured task combines a mathematical problem with its solution into a single
presentation with a fixed format. A structured task can be a mathematical theorem
and its proof, an algebraic task and its solution, a verbal task and its solution and
so on. We show in this chapter how to present different mathematical problems and
their solutions as structured tasks.

2.1 Structured Calculation

First we present a simple special case of a structured task, a structured calculation.
An algebraic calculation is usually described as a chain of equalities,

t0 = t1 = ... = t

n

.

This chain corresponds to the propositions

t0 = t1 and t1 = t2 and . . . t

n�1 = t

n

From this we can conclude that
t0 = t

n

,

since equality is transitive. The following example shows how we write such a
calculation as a structured task.

Example 1. Show that the formula for the difference of two squares,

(a+ b)(a� b) = a

2 � b

2

is true.

We prove this proposition with a structured calculation. Each expression is then
written on a separate line. The justification for an equality is written on a line of
its own, after the equality sign and between the expressions that form the equality.

The proof in the form of a structured calculation looks as follows:

3



2. Structured Tasks

• (a� b) (a+ b)

= {the rule for multiplying polynomials}

a

2 + ab� ba� b

2

= {the expressions ab and �ba cancel out}

a

2 � b

2

⇤

The proof is a chain of three algebraic expressions, which we can combine with
equalities:

(a� b) (a+ b) = a

2 + ab� ab� b

2 = a

2 � b

2

This proves the proposition, since equality is a transitive relation. We justify the
equalities by the properties of polynomials. ⌅
Traditionally, we would write the calculation in the following way:

(a� b) (a+ b) = a

2 + ab� ba� b

2 (by the rules for multiplying polynomials)
= a

2 � b

2 (the expressions ab and �ba cancel out)

In this form, both the formula and the justification must fit on the same line. This
means that the justification must be short, which often cryptic, and it is easy to
omit it from the proof. The basic idea of a mathematical proof is then lost, i.e.,
to convince the reader that each step is correct and that the steps combined lead
to the desired conclusion. If justifications are omitted, the readers must find them
themselves. This makes it harder to read and understand a proof. At the same time,
the risk of misunderstandings and errors increase, which in turn will make it more
difficult to understand subsequent argumentations.

From a pedagogical point of view, it is particularly important that all the justifica-
tions are written out explicitly. The teacher is then able to check that a student has
a real understanding of the theory needed, and has applied it correctly. It is also
easier for the students to check his or her own calculations, by going through each
step separately, checking the justification for the step, and that the step has been
carried out correctly.

The whole line is reserved for justifications in a structured calculation, which means
tat there is enough space for proper justifications. More lines can be used if needed.
In a way, the format forces one to give a justification for each step, since an omitted
justification stands out as an empty parenthesis.

A structured calculation has the following general format:
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2.1. Structured Calculation

• t0

⇠1 {explanation for why proposition t0 ⇠1 t1 is
true}

t1

⇠2 {explanation for why propsition t1 ⇠2 t2is true}

t2

...

t

n�1

⇠
n

{explanation for why proposition t

n�1 ⇠
n

t

n

is
true}

t

n

⇤

All relations ⇠
i

are equalities in the previous example, but in general, this need
not be the case. Each proposition in the calculation is justified by an argument
written between curly brackets after the relation symbol. Each expression and each
justification is written on a line of its own. In this way, we get more space for
longer expressions and justifications. If needed, we can use more than one line for
an expression or justification.

The calculation is written in two columns: the first one contains the relation sym-
bols (in the example ”=”) and the special characters (here the “•” that begins the
derivation and the “⇤” that ends it), the second one contains the expressions and
the justifications.

We can use any binary relation ⇠ between the expressions. The most common ones
are ⌘ or , (equivalence), ) (implication) and ( (reverse implication) for logical
propositions, together with equality = and order relations <,>,,� for arithmetic
and algebraic propositions. Available relations are not limited to just these, other
relations can be used as well. We often choose transitive relations (all the relations
mentioned above are transitive), but we can also use other binary relations between
the expressions. We can also use different binary relations in the same derivation.
For instance, equality can be combined with any relation: if a ⇠ b holds and b = c,
then proposition a ⇠ c also holds.

We use the the notation⌘ for equivalence between logical expressions in our exam-
ples. The relation p ⌘ p

0, where p and p

0 are logical propositions, states that p and
p

0 are equally true, i.e., either both are true or both are false. Another common
notation for equivalence is ,, but we think that the notation ⌘ better illustrates

5



2. Structured Tasks

that we are talking about equality between truth values. The equivalence relation
is transitive.

An example of a non-transitive relation is inequality: a 6= b and b 6= c does not
necessarily mean that a 6= c. A simple example to the contrary is 0 6= 1 and 1 6= 0,
which are both true, but 0 6= 0 is not true. Therefore, using several consecutive
inequalities in a calculation would generally do not lead to a desired result.

2.2 Structured Task

We often want to state explicitly what task we should solve and what assumptions
we may assume when solving the task. We then use a general structured task. The
following example illustrates this format.

Example 2. Show that if a,b and c are non-negative numbers, then it holds that

(1 + a) (1 + b) (1 + c) � 1 + a+ b+ c

We formulate the task, the assumptions and the calculation that solves the task as
a structured task.

• Show that (1 + a) (1 + b) (1 + c) � 1 + a+ b+ c, when

� a,b,c � 0

� (1 + a) (1 + b) (1 + c)

= {multiply the expressions (1 + b) and (1 + c) by each other}

(1 + a) (1 + b+ c+ bc)

= {multiply the expressions (1 + a) and (1 + b+ c+ bc) by each other}

1 + b+ c+ bc+ a+ ab+ ac+ abc

� {subtract the non-negative expression ab+ ac+ bc+ abc from the expression}

1 + a+ b+ c

⇤

The task that we want to solve is,

Show that (1 + a) (1 + b) (1 + c) � 1 + a+ b+ c

The task is written directly after the task sign •, in the second column. The following
lines list the assumptions that we are allowed to make. In this example there is only
one assumption,

a,b,c � 0

6



2.2. Structured Task

The proof itself is a structured calculation, which begins after the �-sign, and ends
at the ⇤-sign, just as before. ⌅
A structured calculation is a special case of a structured task, where the task and
the assumptions are omitted. This shorter form is suitable in situations where it
is clear from the context what we want to prove and which assumptions hold. A
structured task is used when we want to spell out exactly the task to be solved and
the assumptions. In practice both formats are used in parallel.

The basic format of a structured task is as follows:

• Task

- assumption1

...

- assumption
m

� {explanation for why the calculation solves the
task under the given assumptions}

t0

⇠1 {justification for the proposition t0 ⇠1 t1}

t1

⇠2 {justification for the proposition t1 ⇠2 t2}

t2

...

t

n�1

⇠
n

{justification for the proposition t

n�1 ⇠
n

t

n

}

t

n

⇤

An assumption is marked by a ”�”. We can also mark the assumptions with letters
in parentheses (such as (a), (b) , ... ), if we need to reference individual assumptions
in the calculation. The proof that follows the assumptions begins with the �-symbol
(read ”prove that”). The proof ends by the symbol ⇤ (read ”which was to be proven”).
We may add a justification for why the calculation proves the proposition under the
given assumptions, after the proof symbol. We use two columns as before. We write

7



2. Structured Tasks

special symbols like ”•”, ”�” ,”�” and relation symbols in the first column and the
task, assumptions, expressions and justifications in the second column.

We will continue below by expanding this basic format with new functionality, such
as nested tasks, facts and definitions. However, the basic format above works well
for solving many simpler mathematical problems.

2.3 Nested Tasks

The task format above is sufficient when the justification for each step is relatively
simple and can be condensed into a few lines. When the justifications get more
complicated, we will need nested tasks. Below is an example of how to use nested
tasks in a derivation.

Example 3. Show that m

2 � n

2 � 3, when m and n are positive integers and
m > n. The following two basic rules of arithmetics are used in this derivation:

a+ b  a+ b

0
, when b  b

0 (addition is monotonic)
ab  ab

0, when a � 0 and b  b

0 (multiplication is monotonic)

We prove the proposition in the following way.

• Show that m

2 � n

2 � 3, when

� m and n are positive integers and

� m > n

� m

2 � n

2

= {the difference of two squares}

(m� n) (m+ n)

� {multiplication is monotonic, because m � n � 0 and m + n � 3 follow from
the assumptions}

(m� n) · 3

� {multiplication is monotonic, because m � n � 1 and 3 � 0 follow from the
assumptions}

1 · 3

= {calculate}

3

⇤ ⌅

8



2.3. Nested Tasks

The second step of the derivation is somewhat complicated. It refers to the rule
for monotonicity of multiplication. However, the rule is only applicable when the
conditions m� n � 0 and m+ n � 3 are satisfied. We can reason as follows:

• m > n according to the assumption, so m�n > 0 (and hence also m�n � 0),

• n > 0 according to the assumption, so n � 1, and

• m > n � 1 according to the assumption, so m � 2 and hence m+ n � 3.

We can write these justifications as simple (logical) calculations in the following
way:

• m > n

⌘ {arithmetics}

m� n > 0

) {arithmetics}

m� n � 0

⇤

• m > n and n > 0

⌘ {arithmetics}

m � n+1 and n �1

) {arithmetics}

m � 2 and n � 1

) {arithmetics}

m+ n � 3

⇤

Instead of writing these additional justifications separately in the proof, we can
write them directly in the proof as nested tasks. Nested tasks are written directly
after a justification, but indented one level to the right. This shows that they are
part of the justification for the step. Assumptions made in a task will also be valid
in subsequent nested tasks. Later we will show that nested tasks can also include
assumptions of their own.

9



2. Structured Tasks

Example 4. We rewrite the previous proof using nested tasks.

• Show that m

2 � n

2 � 3, when

� m and n are positive integers, and

� m > n

� m

2 � n

2

= {the difference of two squares}

(m� n) (m+ n)

� {multiplication is monotonic, as assumptions m� n � 0 and m+ n � 3 hold}

• m > n

⌘ {arithmetics}
m� n > 0

) {arithmetics}
m� n � 0

⇤
• m > n and n > 0

⌘ {arithmetics}
m � n+ 1 and n �1

) {arithmetics}
m � 2 and n � 1

) {arithmetics}
m+ n � 3

⇤

. . . (m� n) · 3

� {multiplication is monotonic, as assumptions m� n � 1 and 3 � 0 hold}

1 · 3

= {calculate}

3

⇤ ⌅

10



2.4. Focusing on Partial Expressions

The format for a simple justification for the proof step t ⇠ t

0 is shown below on the
left. The format for a justification with nested derivations is shown below on the
right.

t

⇠ {justification}

t

0

t

⇠ {justification}

task1

...

task
n

. . . t

0

A justification can thus be supported by n different nested tasks: task1,. . . , task
n

,
n � 0. We indent these so that they begin at the following column. This makes
nested tasks easy to distinguish from the main task. The justification explains why
t R t

0 is true, when we assume that each nested task is true. Since nested tasks can
sometimes be quite long, we may mark the second expression (in this case t

0) with
the symbol ”. . .” in the first column. This makes it easier to see where the nested
tasks end and the main task continues.

2.4 Focusing on Partial Expressions

Many calculations require us to work with long and complicated expressions. Nested
calculations can then be used to focus on a part of an expression, modifying it
without having to rewrite the entire expression in each step.

11



2. Structured Tasks

Example 5. Simplify the expression
p
7 + 2

p
11 +

p
7� 2

p
11.

• Simplify the expression
p

7 + 2
p
11 +

p
7� 2

p
11

�
p
7 + 2

p
11 +

p
7� 2

p
11

= {square the expression, simplify it and take the square root of the simplified
expression}

• (
p
7 + 2

p
11 +

p
7� 2

p
11)2

= {the square of a binomial}

7 + 2
p
11 + 2 ·

p
7 + 2

p
11 ·

p
7� 2

p
11 + 7� 2

p
11

= {focus on the partial expression 2 ·
p

7 + 2
p
11 ·

p
7� 2

p
11}

• 2 ·
p
7 + 2

p
11 ·

p
7� 2

p
11

= {write under the same radical sign}

2 ·
q
(7 + 2

p
11) · (7� 2

p
11)

= {the difference of two squares}
2
p
49� 4 · 11

= {simplify}
2
p
5

⇤
. . . 7 + 2

p
11 + 2

p
5 + 7� 2

p
11

= {simplify}
14 + 2

p
5

⇤

. . .

p
14 + 2

p
5

⇤ ⌅

The example uses a nested calculation, which in turn contains another nested calcu-
lation. The original problem was to simplify a radical expression. We first simplify
the square of the expression in a nested calculation. The square root of the simplified
expression is then the solution to the original problem. The inner nested calcula-
tion focuses on only a part of an expression, so that is is easier to see what we are
working on. We also make fewer mistake when we do not have to copy complicated
expressions from one line to the next.

Writing and reading this type of proof becomes easier when we use a computer and an
editor that support indentation and that can display and hide nested derivations (an
outlining editor). We can then decide on the level of detail we use when studying the
proof. Hiding nested derivations gives a better overview of the proof, while showing
them gives a more detailed picture of the proof.

12



2.5. Word Problems

2.5 Word Problems

A word problem first describes a situation. The task is then to prove or calculate
something related to this situation. We show here how to solve word problems with
tasks. We have here indicated the assumptions by letters, so that it is easier to refer
to them in the calculation. Our first word problem is from mechanics.

Example 10. Since the year 1960 the travel time of the fastest train connection
between the cities of Helsinki and Lappeenranta has decreased by 37%. Calculate
by how many percentages the average speed has increased. Assume that the length
of the railroad has not changed.

We first rewrite the task by adding notations used in the proof. The rewritten task
is as follows: After the year 1960 the travel time t

0 of the fastest train connection
between Helsinki and Lappeenranta has shortened by 37% compared to the original
travel time t. Calculate how by how many percent p the mean speed v

0 has increased
compared to the original mean speed v. We assume that the length s of the track
has not changed.

• Calculate the percentage of change p in the speed, when

� t

0 = 0.63 · t

� p

= {the definition of percentage of change}

v

0 � v

v

= {physics: the definition of mean speed is v = s

t

, where s is the distance
travelled and t is the travel time}
s

t

0 �
s

t

s

t

= {simplify}
s

t

0
s

t

� 1

= {simplify the fractions}

s · t
s · t0 � 1

= {simplify, assumptions}

1

0.63
� 1

13



2. Structured Tasks

⇡ {calculate an approximate value}

0.59

= {convert to percent: x% = x

100}

59%

⇤

Answer: the mean speed has increased by 59%. ⌅

2.6 Questions and Answers

A mathematical task is often to find a value x that satisfies some given conditions,
or to find every value x that satisfy the given conditions. Solving an equation is an
example of this common type of task. Often its is not stated explicitly with respect
to which variable one should solve an equation, since this is obvious (the variable x),
but when the equation has many variables and constants, then it may be ambiguous
which variable value we need to find.

We can describe a task more precisely by stating explicitly the variable that we are
interested in, and what conditions it should satisfy. We can then give the answer
explicitly after the ⇤- symbol. The following word problem shows how this works.

Example 14 The width of a board is 95 mm and its length is 1,6 m. It is sawn
into pieces of the same length, which are placed next to each other so that they form
a board in the shape of a square. What is the maximum length of the side of the
square?

Let n be the number of pieces, n 2 Z+, and let x be the length of the pieces. Then
we know that nx  1600, where the unit of length is millimeter. We also know that
x = 95n, since the pieces form a square. We describe the situation in 2.1 (notice
that one piece may be left over) .

x

95 mm

21 n.  .  .

Figure 2.1: The square and the excess piece.

Now we want to maximize the value of x.

14



2.6. Questions and Answers

• Find n 2 Z+ that maximizes the value x = 95n and satisfies the condition
nx  1600

� n maximizes the value x = 95n, and nx  1600 and n 2 Z+

⌘ {simplify the condition}

• Simplify nx  1600, when
- x = 95n

� nx  1600

⌘ {use the assumption x = 95n}
n · 95n  1600

⌘ {simplify}
n

2  1600/95

⌘ {solve by assuming that n 2 Z+; 16  1600
95 < 25}

n  4

⇤

. . . n maximizes the value x = 95n, and n  4 and n 2 Z+

⌘ {x is a strictly increasing function of n}

n = 4

⇤ n = 4

In other words, the largest possible board is 4 · 95 = 380 (mm). ⌅

15





Chapter 3
Solving a Problem Step by Step

In the previous chapter we showed how structured tasks are applied to solve simple
mathematical tasks. But when the solution becomes longer and more complicated,
we need methods that allow us to split the solution into smaller parts. Furthermore
we need a clear strategy for how to solve a task.

In mathematics there are three basic strategies for solving more complex problems
step by step, algebraic calculation, forward proof and backward proof. We have
shown in the previous chapter how to solve problems by calculation. In a forward
proof we proceed step by step so that we list a sequence of facts that follow from the
assumptions and previous facts and that help with the understanding and solving of
the problem. We continue until we have collected so many facts that we can solve
the problem directly, by calculating or by another fact. Backward proofs start from
the original problem and tries to reduce this to as set of simpler problems, so that
solving them also gives the solution to the original problem. We can solve simpler
problems directly, for instance by calculating or then we can reduce them to even
simpler problems, etc.

Structured derivations enable all these proof strategies at the same time, in different
parts of a solution. In this chapter we show how to use forward and backward proofs
in structured tasks.

3.1 Forward Proofs

When we solve a task we often have a situation where we cannot proceed to directly
calculate the desired result. First we need to prepare for the calculation by listing
a few facts that follow directly from the assumptions and that we need for the
calculations or to prove other facts. We write facts in the following way:

+ {justification}

proposition

17



3. Solving a Problem Step by Step

We mark facts with a ”+”-sign, contrary to assumptions, which we mark by a ”�”-
sign. Facts should always include a justification, which tells how the fact follows from
the assumptions and earlier facts. The justification is written before the observation.
The justification can be simple or it can include nested tasks. Facts can be numbered,
in which case the numbers are written in square brackets (e.g. “[1]”, “[2]” etc.).

First we will show by an example how we can use observations in a derivation from
geometry.

Example 11 The height to the hypotenuse in a right triangle divides the hy-
potenuse at a ratio of 3 : 7. Find the ratio between the legs of the triangle.

We start by drawing a figure, which describes the problem:

7x

3x

In the next figure we have named the legs (a and b), the hypotenuse (c) and the
height (h).

c

h

a

b

3x

7x

We use this notation in the task. First we write some simple facts that follow directly
from the figure. Based on these, we can prove a few other facts. Finally, we calculate
the ratio between the length of the legs using these facts.

• Find the ratio a

b

[1] {from the figure}

c = 10x

[2] {the figure and the Pythagorean theorem}

h

2 + 9x2 = a

2

[3] {the figure and the Pythagorean theorem}

18



3.1. Forward Proofs

h

2 + 49x2 = b

2

[4] {the figure and the Pythagorean theorem}

a

2 + b

2 = 100x2

[5] {eliminate h}

• [2] ^ [3]
⌘ {observation [2] and [3]}

h

2 + 9x2 = a

2^h2 + 49x2 = b

2

) {subtract the first equation from the second one and simplify}
b

2 � a

2 = 40x2

⇤

. . . b

2 � a

2 = 40x2

[6] {Find b

2}

• [4] ^ [5]
⌘ {observation [4] and [5]}

a

2 + b

2 = 100x2^b2 � a

2 = 40x2

) {add together the equations}
2b2 = 140x2

⌘ {divide both sides by 2}
b

2 = 70x2

⇤

. . . b

2 = 70x2

[7] {Find a

2}

• [4] ^ [6]
⌘ {observation [4] och [6]}

a

2 + b

2 = 100x2^b2 = 70x2

) {substitute the second equation into the first one}
a

2 + 70x2 = 100x2

⌘ {solve a

2}
a

2 = 30x2

⇤

. . . a

2 = 30x2

� a

b
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3. Solving a Problem Step by Step

= {the definition of square root, a and b are positive numbers}
q

a

2

b

2

= {observation [6] and [7]}
q

30x2

70x2

= {reduce and simplify}
p
3p
7

⇤ ⌅

The following example from analytic geometry gives another example of how to use
facts in derivations. In this example we identify the assumptions by letters and the
facts by numbers.

Example 12. Find the point on the parabola y = x

2 � 2x� 3, where the directed
angle of the tangent is 45�.

We can rephrase the problem in the following way: Find the point (x0, y0) on the
parabola y = x

2 � 2x� 3 where the directed angle ↵ of the tangent is 45�.

• Find the point (x0, y0), when

(a) y = f (x) = x

2 � 2x� 3 for every x 2 R, and

(b) the directed angle of the tangent at the point (x0, y0) is ↵ = 45�

[1] {find the derivative at the point x0}

• the tangent to the parabola at the point (x0, y0) has the directed angle
45�

⌘ {the slope k is given by the directed angle ↵ with he formula k = tan↵}
the slope of the tangent at the point (x0, y0) is tan 45�

⌘ {tan 45� = 1}
the slope of the tangent at the point (x0, y0) is 1

⌘ {the derivative of the function gives the slope}
f

0 (x0) = 1

⇤

. . . f

0 (x0) = 1

[2] {find the value of the variable x0, observation [1]}

• f

0 (x0) = 1
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3.1. Forward Proofs

⌘ {assumption (a), calculate the derivative}
2x0 � 2 = 1

⌘ {solve x}
x0 = 3

2

⇤

. . . x0 = 3
2

� (x0, y0)

= {observation [2]}

. . .

�
3
2 , y0

�

= {find the value of y0 using assumption (a)}
⇣

3
2 ,
�
3
2

�2 � 2 ·
�
3
2

�
� 3

⌘

= {calculate}
�
3
2 ,�

15
4

�

⇤

Thus the point we are looking for is (x0, y0) = ( 32 ,�
15
4 ). ⌅

The following is a general form of a structured task with facts.
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3. Solving a Problem Step by Step

• Task

- assumption1

...
- assumptionm

+ {justification of the fact}

fact1

...
+ {justification of the fact}

factm

� {justification for why the derivation is a solution to the

task with the given assumptions and facts}

t0

⇠1 {justification of the proposition t0 ⇠1 t1}

t1

⇠2 {justification of the proposition t1 ⇠2 t2}

t2

...

tn�1

⇠n {justification of the proposition tn�1 ⇠n tn}

tn

⇤

3.2 Backward Proofs

Backward proofs do not require new mechanisms, we can do them using nested tasks.
We present two examples where the given task is solved by reducing the original task
to more manageable nested tasks. We do not need a calculation at the task level,
so we can omit this.

The first example is a proof by cases. In this type of proof we first identify every
possible case, then we show that our proposition is true in each case. It is important
that the cases that we treat cover every possibility.

Example 16. Prove that the inequality |x + 1| > 1 is true outside the interval
[�2,0].
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3.2. Backward Proofs

• Show that |x+ 1| > 1, when

(a) x > 0 _ x < �2

� {proof by cases, according to assumption (a), checking the cases x > 0 and
x < �2 separately is sufficient}

• Show that |x+ 1| > 1, when
� x > 0

� |x+ 1|
= {the definition of absolute value, assumption x > 0}

x+ 1

> {assumption}
0 + 1

= {calculate}
1

⇤
• Show that |x+ 1| > 1, when
� x < �2

� |x+ 1|
= {the definition of absolute value, assumption x < �2}

� (x+ 1)

= {simplify}
�x� 1

> {assumption x < �2 i.e. �x > 2}
2� 1

= {calculate}
1

⇤

⇤ ⌅

A proof by induction is another example where reduction is a good way to treat a
problem. In a proof by induction we treat two cases: the base case and the inductive
step. If we can prove both steps, then the induction hypothesis is true.
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3. Solving a Problem Step by Step

Example 14. Prove that

0 + 1 + . . .+ n =
n (n+ 1)

2

for each n 2 N, using induction. We prove this as follows:

• Show that 0 + 1 + . . .+ n = n(n+1)
2 for each n 2 N.

� {proof by induction}

• Base case: show that 0 + 1 + . . .+ n = n(n+1)
2 , when

� n = 0

� 0 + 1 + . . .+ n = n(n+1)
2

⌘ {substitute assumption n = 0}

0 = 0(0+1)
2

⌘ {multiply by zero}
T

⇤
• Inductive step: show that 0 + 1 + . . .+ n

0 =
n

0(n0+1)
2 , when

� n

0 = n+ 1 and
� 0 + 1 + . . .+ n = n(n+1)

2

� 0 + 1 + . . .+ n

0

= {assumption}
0 + 1 + . . .+ n+ (n+ 1)

= {induction hypothesis}
n(n+1)

2 + (n+ 1)

= {find a common denominator}
n(n+1)+2(n+1)

2

= {the distributive law, the commutative law}
(n+1)(n+2)

2

= {assumption n

0 = n+ 1}
n

0(n0+1)
2

⇤

⇤ ⌅
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Chapter 4
Structured Derivations

A structured derivation is a sequence of derivation steps, where each step is either

• an assumption,

• a declaration,

• a fact,

• a definition, or

• a task.

A structured derivation is the traditional way in which a mathematician work on
a problem. First, they try to formulate the problem in mathematical form. When
they do this, they realize the need for making the assumptions more precise, and
perhaps also the need for some additional assumptions. Similarly,they might need
to introduce some new concepts in order to express the problem better. After this,
they focus on solving the problem. When the original problem has been solved, they
may see that it leads to other interesting problems, which can be studied the same
context. These require additional assumptions and new definitions and lead to new
problems, etc. Mathematical reasoning develops a bit like a novel, with a clear plot
and a climax. The difference is that each step must be proven to be correct, since a
single error can ruin the entire structure.

A structured derivation gives more freedom for expressing and solving a problem
than using a single structured task:

• We can define new concepts before we make tasks or observations where we
use these concepts.

• We can solve many tasks under the same assumptions, observations and defi-
nitions.

• We do not have to present all assumption right away, we can include them as
we need them.
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4. Structured Derivations

Structured derivations generalize the constructs that we have described earlier. A
structured task is a special case of a structured derivation, a derivation with only
one task. A single assumption, declaration, fact and definition is each also a special
cases of a structured derivation.

4.1 Definition

There are two new constructs here, a declaration and a definition. A definition has
the general form

+ Define c1 2 A1, . . . , cm 2 A

{justification}

definition condition

This defines the new constants c1 2 A1, . . . , c

m

2 A

m

, which we can then use
freely in the subsequent derivation. The justification should show, based on the
assumptions and earlier observations, we can give these constants values that satisfy
the definition condition. A defined constant can be simple, like a real number or an
integer, but it can also be more complex, like a function.

We can use definitions also in structured tasks, in the same way as facts. They
can be useful, e.g., when we need a shorter notation for some complicated concept.
However, a definition will usually have a more general purpose, to introduce a new
concept that is used in many places. Then it is natural that the definition is part of
the general development of the theory, i.e. it is a step in a structured derivation.

Example 15. We define the sequence a0, a1, a2, . . . as follows:

a

n

=
n

2n+ 1

when n = 0, 1, 2, 3, . . . . Show that (A) 0 < a

n

<

1

2
when n � 1, that (B) a

n+1 > a

n

when n � 0 and (C) calculate lim
n!1 a

n

.

We solve this task by a general derivation. We identify the tasks by upper case
letters, A, B and C.

+ Define a : N ! R

{Function a describes a sequence, when we denote a

i

= a(i), i = 0, 1, 2, . . . .
This sequence is well-defined, since 2n+ 1 > 0 when n = 0, 1, 2, . . . }

a

n

=
n

2n+ 1
when n = 0, 1, 2, 3, . . .
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4.1. Definition

A. Show that 0 < a

n

<

1

2
, when

- n 2 N, n � 1

� 0 < a

n

<

1

2

⌘ {definition a

n

}

0 <

n

2n+ 1
<

1

2

⌘ {multiply both sides by 2n+ 1, write the double inequality as a conjunction}

0 < n ^ n <

2n+ 1

2

⌘ {simple}

0 < n ^ 2n < 2n+ 1

⌘ {according to the assumption n � 1, so the first proposition is true; the second
proposition is always true}

T

⇤

B. Show that a

n+1 > a

n

, when

- n 2 N

� a

n+1 > a

n

⌘ {definition a

n

}

n+ 1

2(n+ 1) + 1
>

n

2n+ 1

⌘ {simple}

n+ 1

2n+ 3
>

n

2n+ 1

⌘ {multiply by the expression (2n + 3)(2n + 1), which is positive according to
the assumption}

(2n+ 1)(n+ 1) > (2n+ 3)n

⌘ {simple}

2n2 + 3n+ 1 > 2n2 + 3n

⌘ {subtract 2n2 + 3n from both sides}

1 > 0
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4. Structured Derivations

⌘ {arithmetics}

T

⇤

C. Define lim
n!1 a

n

� lim
n!1 a

n

= {according to the definition}

lim
n!1

n

2n+ 1

= {divide the numerator and the denominator by n }

lim
n!1

n

n

2n
n

+ 1
n

= {simple}

lim
n!1

1

2 + 1
n

= {
1

n

! 0 when n ! 1}

1

2

⇤ lim
n!1 a

n

=
1

2
⌅

4.2 Modeling

Structured derivations are very useful when we want to model some situation and
then ask questions about this model. We will solve the task we presented earlier
about the train connection between Helsinki and Lappeenranta again, but now using
a structured derivation. This means that we first construct a model that describes
the task, and then we solve the questions related to the model.

It is often good to introduce the quantities that we use in a model explicitly. We do
this with a declaration, of the form

+ c1 2 A1, . . . , cm 2 A
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4.2. Modeling

This introduces new constants named c1, . . . , cm in the derivation, where the value
of constant c1 is an element of the set A1, constant c2 is an element of the set A2

etc.

A declaration can be seen as a special case of a definition where we have omitted
both the justification and the definition condition. This means that we only give
the name and the value range of the constant (the value range must be non-empty).
We can add further restrictions on the constant later on with assumptions.

Example 16. Since the year 1960 the travel time of the fastest train connection
between Helsinki and Lappeenranta has decreased by 37%. Calculate by how may
percent the average speed has increased. Assume that the length of the railroad has
not changed.

We start by naming the constants that we use to describe the task.

+ s 2 R – the distance between Helsinki and Lappeenranta

+ t 2 R – the original travel time

+ t

0 2 R – the current travel time

We can write comments in a derivation after the ”–” sign. The comments reminds
us of what the quantities stand for in the original problem description.

We do not have to write the entire structured derivation as a single piece continuous
text, we can add text between the steps as shown here. This helps us to explain to
the reader how the solution proceeds, and explain the choices we make.

Next, we state the assumptions:

(a) t

0 = 0.63 · t

(b) s > 0, t > 0, t0 > 0

Notice assumption (b), which states that s, t, t0 are all greater than zero. This follows
from the definition of the task. Since we know that s > 0, the travel time cannot be
zero.

We define the speeds in the usual way:

[1] Define v 2 R – the original mean speed of the train

{v is well-defined, since t > 0}

v =
s

t

[2] Define v

0 2 R – the current mean speed of the train

{v0 is well-defined, since t

0
> 0}
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4. Structured Derivations

v

0 =
s

t

0

We define the percentage of change in the speed as follows:

[3] Define p 2 R – the percentage of change in train speed

{p is well-defined: since s, t > 0, then also v > 0}

p =
v

0 � v

v

We can now solve the task:

• p

= {definition [3]}

v

0 � v

v

= {definition [1] and [2]}
s

t

0 �
s

t

s

t

= {simplify}
s

t

0
s

t

� 1

= {simplify the fractions}
s · t
s · t0 � 1

= {simplify, assumption}
1

0, 63
� 1

⇡ {calculate an approximate value}

0.59

= {convert to percent: x% = x

100}

59%

⇤
Answer: the mean speed has increased by 59%. ⌅

A structured derivation is a better way to present a mathematical argument than
a structured task when the argument is long and there is a need to explain the
different derivation steps and why we proceed in the way we do.
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Chapter 5
Derivations and Logic

A central feature of a structured derivation is the use of logical expressions and
rules in mathematical proofs and derivations. Logic is of course an essential part of
every proof, but it is often used in an informal way. Logical notation is used in an
arbitrary and inconsistent manner. Standard logic notation is used systematically in
structured derivations, and the rules of logic are used explicitly. This means that we
can calculate with logical expressions in the same way as we calculate with standard
arithmetic expressions.

5.1 Logical Connectives

We have collected the logical notations used in structured derivations into the table
5.1. The logical notations that we use in examples is fairly standard. Alternative
notation can be, e.g., using ”!” for implication, and using ”,” and ”$” for equiv-
alence. Sometimes we see the notation ”&” for conjunction and ” |” for disjunction.
The universal quantifier is sometimes denoted ”Ax” and the existential quantifier
sometimes ”Ex”.

We have already used logical notation in earlier examples quite freely. In fact, high

Table 5.1: Logical symbols

T : truth, a true proposition
F : false, a false proposition
¬p : negation, proposition ¬p is false when p is true, true when p is false

p ^ q : conjunction, proposition is true when both p and q are true
p _ q : disjunction, proposition is true when p or q (or both) are true
p ) q : implication, if p is true, then q is also true
p ⌘ q : equivalence, p and q are both true or both false

(8x : p (x)) : universal quantifier p(x) is true for every value of x
(9x : p (x)) : existential quantifier , p(x) is true for some value of x
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5. Derivations and Logic

school mathematics uses quite a bit of logic, both to present and to manipulate
mathematical propositions. Our first example shows how logic is used when solving
a second-degree equation.

Example 6. The task is to solve the second-degree equation 7x2 � 6x = 0. The
following structured derivation solves the equation:

• Solve the equation 7x2 � 6x = 0

� {equivalence is transitive}

7x2 � 6x = 0

⌘ {the distributive law: a (b+ c) = ab+ ac}

x (7x� 6) = 0

⌘ {the zero-product property: ab = 0 ⌘ (a = 0 _ b = 0)}

x = 0 _ 7x� 6 = 0

⌘ {solve the equation on the RHS of the disjunction}

x = 0 _ x = 6
7

⇤ ⌅

The logical proposition 7x2 � 6x = 0 is here modified (using steps that preserve the
equivalence) into the expression x = 0_x = 6

7 , which directly show which two values
of the variable x satisfy the equation (the variable x satisfies the equation when its
value is 0 or 6

7 ). Each step is justified by a rule. For instance, in the first step we use
the distributive law for multiplication. According to the rule, a (b+ c) = ab + ac.
We use this rule in the step

7x2 � 6x = 0 ⌘ x (7x� 6) = 0,

i.e. the rewritten equation is equivalent to the original equation.

It is worth noting that we give the solution to the second-degree equation as a
disjunction. Thus we showed with the derivation above that the equation 7x2�6x =
0 is as true as the equation x = 0_ x = 6

7 . Thus an equation is a logical expression,
which can be true for some values of the variable x and false for some other values
of the variable x.

We can also use propositions expressed in natural language. The following example
describes this.
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5.1. Logical Connectives

Example 7. Show that k2+k is an even number for every integer k. The following
is a simple proof of the proposition:

• Show that k

2 + k is an even number, when

- k is an integer

� the number k

2 + k is even

⌘ {the distributive law}

the number k (k + 1) is even

⌘ {a product is even if one of the factors is even}

the number k is even _ the number k + 1 is even

⌘ {one of two consecutive integers is always even}

T

⇤ ⌅

In the example we have used natural language in logical propositions, e.g. ”k2 + k

is an even number”.

The task was to prove that the proposition ”k + k is an even number” is true. We
express this in the following way

(k2 + k is an even number) ⌘ T ,

in other words, the proposition ”k2 + k is an even number” is equivalent to the
truth value T . It we want to prove the proposition using a derivation, then we
write the propositions with equivalence relations. Since p ) T is always true, it is
actually sufficient to show that the proposition T ) p is true.

The following example describes how we can use rules for logical expressions when
we solve high school level problems.

Example 9. In a right triangle the length of the hypotenuse is 15 cm, and the
perimeter is 36 cm. Find the lengths of the legs.

We use the Pythagorean theorem a

2 + b

2 = c

2
, where a and b are the legs and c is

the hypotenuse. We can calculate the perimeter in the usual way as the sum of the
side lengths, i.e. a+ b+ c.

• Calculate the length of the sides in a triangle, when

(a) the triangle is a right triangle with the legs a and b and the hypotenuse c

(b) c = 15 (cm)
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5. Derivations and Logic

(c) the perimeter of the triangle is 36 (cm)

� T

⌘ {the Pythagorean theorem, assumption (a)}

a

2 + b

2 = c

2

⌘ {assumption (b) and (c)}

a

2 + b

2 = 152 ^ a+ b+ 15 = 36

⌘ {solve the second equation for b}

a

2 + b

2 = 152 ^ b = 21� a

⌘ {substitute b from the second equation into the first equation, 152 = 225}

a

2 + (21� a)2 = 225 ^ b = 21� a

⌘ {calculate (21� a)2}

a

2 + 441� 42a+ a

2 = 225 ^ b = 21� a

⌘ {simplify the first equation}

2a2 � 42a+ 216 = 0 ^ b = 21� a

⌘ {solve the second-degree equation}

• 2a2 � 42a+ 216 = 0

⌘ {the quadratic formula}

a = �(�42)±
p
422�4·2·216

2·2

⌘ {simplify}

a = 42±
p
1764�1728
4

⌘ {simplify}
a = 42±6

4

⌘ {simplify}
a = 9 _ a = 12

⇤

. . . (a = 9 _ a = 12) ^ b = 21� a

⌘ {distributivity: (p _ q) ^ r = (p ^ r) _ (q ^ r)}

(a = 9 ^ b = 21� a) _ (a = 12 ^ b = 21� a)

⌘ {substitute the value of the variable a into the equation for b}

(a = 9 ^ b = 21� 9) _ (a = 12 ^ b = 21� 12)
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5.2. Quantifiers in High School Mathematics

Figure 5.1: A parabola opening up and down

⌘ {simplify}

(a = 9 ^ b = 12) _ (a = 12 ^ b = 9)

⇤

The answer shows that the length of one leg is 9 cm the other is 12 cm. ⌅
We started the proof from the proposition T . Since we know that the Pythagorean
theorem is true, we can use assumption (a) to show that

T ⌘ a

2 + b

2 = c

2

Then we show that a

2 + b

2 = c

2 is equivalent to the proposition (a = 9 ^ b =
12) _ (a = 12 ^ b = 9). Since T is true, the proposition that we get as a result must
be true, and we have solved the task.

5.2 Quantifiers in High School Mathematics

The following task is an example of a more challenging derivation, where we show
how to solve a mathematical problem using logical notation, in this case quantifier
notation.

Example 8. For which values of the constant a is the function f : R ! R always
negative, when f (x) = �x

2 + ax+ a� 3 for every x?

In this case, solving the main task require that we solve two subtasks (calculate the
discriminant D

f

and calculate its zeros). We refer to the curves in the figure 5.1,
which are parabolas opening up and down:

We solve the task using a structured derivation in the following way.

• Calculate for which values of the constant a the function f is always negative,
when
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5. Derivations and Logic

- f (x) = �x

2 + ax+ a� 3 for every x 2 R

�
�
8x : �x

2 + ax+ a� 3 < 0
�

⌘ {the graph of function f is a parabola opening down when the coefficient of
the second-degree term is negative; a graph is always negative, if it does not
have zeros (the left-hand figure)}
�
8x : �x

2 + ax+ a� 3 6= 0
�

⌘ {a second-degree equation does not have zeros, if the discriminant D

f

is less
than zero}

D

f

< 0

⌘ {substitute the value of the discriminant D

f

}

• Calculate the value of the discriminant D

f

� D

f

= { the discriminant of Ax

2+Bx+C = 0 is given by the formula B

2�4AC}
a

2 � 4 (�1) (a� 3)

= {simplify}
a

2 + 4a� 12

⇤

. . . a

2 + 4a� 12 < 0

⌘ {the graph of the function defined by the expression a

2+4a�12 is a parabola
opening up when the coefficient of the second-degree term is positive, thus the
graph is negative between the zeros (the right-hand figure)}

• Calculate the zeros of the polynomial a2 + 4a� 12

� a

2 + 4a� 12 = 0

⌘ {the quadratic formula}

a =
�4±

p
42�4·1·(�12)

2·1

⌘ {solve}
a = 2 _ a = �6

⇤

. . . �6 < a < 2

⇤

We have thus proved that
�
8x : �x

2 + ax+ a� 3 < 0
�
⌘ �6 < a < 2.
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5.3. Exact Proofs

In other words, the function f is negative, if and only if �6 < a < 2. ⌅

The main derivation and one of the nested derivations use equivalence between
the logical proposition, while in the first nested derivation uses equality between
arithmetic expressions.

We can also use extra material, such as figures, tables or other aid in structured
derivations. In the previous example there was two figures that we referred to in the
proof. Additional material is presented outside the proof, but it can be referred to
in the derivation. We also use the properties of parabolas in the proof.

We need to prove that the relation between the proposition is equivalence. If we
only proved the implication to the right

(8x : �x

2 + ax+ a� 3 < 0) ) �6 < a < 2,

the conditions for the constant a might be too weak, which would mean that we
could get extra values that do not satisfy the original conditions. If on the other
hand, we only showed that

�
8x : �x

2 + ax+ a� 3 < 0
�
( �6 < a < 2,

it is possible that we would not find every value of the constant a that satisfies the
original condition. We use equivalence to show that the condition is satisfied for
the calculated values of the constant a and only for those values.

5.3 Exact Proofs

The justifications for the steps have been rather free until now. If we want to make
the proofs logically more precise, we need to mention which rule we have used in
each step. We must also mention how we have used the rule and justify why we are
allowed to use the rule in this context.

Let us study the distributive law, which is a typical rule from algebra:

x(y + z) = xy + xz.

This is true for every arithmetic expression x,y and z. Here x,y and z are so-called
metavariables (or syntactic variables), which we replace by concrete expressions
when we use the rule.

We can write the exact justification of a proof step in the form

{name : rule, where substitution, condition assumptions holds}

Here

• the name of the rule is mentioned (name),
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• the rule itself is written explicitly if necessary (rule),

• we describe how we use the rule (i.e. which values are substituted for the
syntactic variable) (substitutions) and

• we state that the assumptions for using the rule are satisfied.

We can the write a more exact justification for a step where we use the distributive
law in the form:

(a� b) (a+ b)

= {the distributive law for addition: x (y + z) = xy + xz, where x := a � b,
y := a, z := b, condition a� b, a and b are arithmetic expressions holds}

(a� b) a+ (a� b) b

Here x := a� b, y := a and z := b are substitutions used in the rule. Thus we apply
the distributive law so that we choose a� b as the variable x, a as the variable y and
b as the variable z. We also state that we can use the rule because every expression
is arithmetic. After substituting we get a special case of the distributive law:

(a� b)(a+ b) = (a� b)a+ (a� b)b

We can write the rule directly into the justification, as we have done earlier, or
then we only write the name of the rule. We often omit the substitution, if it is
clear from the proof step which substitution we have used. In the same way we can
omit the conditions, if the context make them clear. In this case we can provide a
very short justifications for the proof step,

(a� b)(a+ b)

= {the distributive law for addition}

(a� b)a+ (a� b)b

The reader then has to add the necessary details, i.e. what the rule actually says
and which substitution we have used. Furthermore we need to check that the as-
sumptions for using the rule hold.

We will now prove the formula for the difference of two squares again, but this time
we only use axioms for real numbers. We use nested derivations in the proof to give
it the same structure as the earlier proof, i.e. the main steps are the same.
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5.3. Exact Proofs

Example 17.

• Show that (a� b) (a+ b) = a

2 � b

2, using only axioms for real numbers

� {transitivity}

(a� b) (a+ b)

= {prove using axioms}

. . . a

2 + (�ba) + ba+
�
�b

2
�

= {prove using axioms}

. . . a

2 � b

2

⇤

The nested derivations are hidden in this proof, so that we can see the overall
structure of the proof. There are two nested derivations in the proof. The first one
is the following:

• Prove that (a� b) (a+ b) = a

2 � b

2 using axioms

� (a� b) (a+ b)

= {the distributive law for addition: x (y + z) = xy + xz, where x := a � b,
y := a, z := b}

(a� b)a+ (a� b)b

= {the commutative law: xy = yx, where x := a� b, y := a}

a(a� b) + (a� b)b

= {the commutative law: xy = yx, where x := a� b, y := b}

a(a� b) + b(a� b)

= {the definition of subtraction: x� y = x+ (�y), where x := a, y := b}

a(a+ (�b)) + b(a+ (�b))

= {the distributive law of addition: x (y + z) = xy + xz, where x := a, y := a,
z := �b}

aa+ a (�b) + b(a+ (�b))

= {the distributive law of addition: x (y + z) = xy + xz, where x := b, y := a,
z := �b}

aa+ a (�b) + ba+ b (�b)

= {the commutative law: xy = yx, where x := a, y := �b}
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aa+ (�b) a+ ba+ b (�b)

= {multiplication by additive inverse: (�x) y = � (xy), where x := b, y := a and
y := b}

aa+ (�ba) + ba+ (�bb)

= {the definition of the power x

2: x

2 = xx, where x := a och x := b}

a

2 + (�ba) + ba+
�
�b

2
�

⇤

The nested derivation of the second step is the following:

• Prove that a

2 + (�ba) + ba+
�
�b

2
�
= a

2 � b

2 using axioms

� a

2 + (�ba) + ba+
�
�b

2
�

= {the sum of additive inverses: �x+ x = 0, where x := ba}

a

2 + 0 +
�
�b

2
�

= {add zero: x+ 0 = x, where x := a

2}

a

2 +
�
�b

2
�

= {the definition of subtraction: x� y = x+ (�y), where x := a

2, y := b

2}

a

2 � b

2

⇤ ⌅

This more exact proof is much longer because it involves only axioms for real num-
bers. When we hide the nested derivations, we are left with the original proof. This
shows how we can argue at different levels of detail with structured derivations. De-
pending on whom the proof is aimed at, we can present an exact or a crude version
by showing or hiding the nested derivations.
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Chapter 6
Syntax of Structured Derivations

A structured derivation has the following general form

derivation:

derivation step1

derivation step2

...

derivation step
n

In other words, a structured derivation is a sequence of consecutive derivation steps.
An individual derivation step is either an assumption, a declaration, a fact, a defi-
nition or a (structured) task:

derivation step:

assumption | declaration | fact | definition | task

We have described the general format for the first four constructs earlier. The
general form of a task is as follows:
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task:

• question

- assumption

...

- assumption

+ declaration

justification

proposition

...

+ declaration

justification

proposition

� justification

expression

rel justifictation

expression

...

rel justification

expression

⇤ answer

justification:

{explanation}

task

...

task

A definition above consists of a declaration part, a justification and a proposition
(the definition condition). A fact is a kind of definition, where we do not introduce
any new constants. In that case, we omit the declaration part of the definition. A
declaration will again omit the justification and the proposition part of the definition.
A structured calculation is a special case of a structured task, where there are no
question, no assumptions, no declarations, no facts or definitions, and no answer.
We then also omit the sign � and the following justification from a calculation.
Notice that a task is defined in terms of justifications and that a justification is
defined in terms of tasks. The task is thus defined in recursive manner.
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The form of structured derivation presented above leaves a number of concrete details
open. This is intentional, the idea is that these are determined by the underlying
mathematical theories that used in the derivation. To fix the syntax of structured
derivations completely, we should also define how to write the following parts of a
derivation:

• assumption — logical proposition

• proposition — logical proposition

• explanation — an explanation for why a derivation step is justified

• expressions — the expressions permitted by the theory in use

• rel — the relation between the calculation steps

• question – what is the task

• answer – the answer to the task

• declaration – new names of constants that we introduce

We leave these categories undefined, however, so that we can use the presentation
format that we want, depending on which level of education we use the derivation,
which branch of mathematics we apply the method on and with what precision we
express the logic we use.
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Chapter 7
Additional Information

Structured derivations are described in more broadly and in more detail in the book

Teaching Mathematics in the Digital Age with Structured Derivations
(Ralph-Johan Back, Four Ferries Publishing, 2016).

A shorter version of this book is

Structured Derivations: Teaching Mathematical Reasoning in High School
(Ralph-Johan Back, Four Ferries Publishing, 2015),

which focuses on the use of the method on secondary level education. Both books
are available from e.g. the Amazon book store.

To see how structured derivations are used in practice in mathematics education,
you can check out the eMath digital book. This covers all the compulsory courses
of the standard high school mathematics curriculum in Finland (grades 10 - 12).

eMath 1 - 10 (Ralph-Johan Back, Stefan Asikainen, Matti Hutri, Joonatan
Jalonen, Antti Lempinen, Marie Linden-Slotte, Saara Mäkinen, Petri
Sallasmaa, Petri Salmela. Four Ferries Publishing 2016).

The book series is available on iPad tablets from the AppStore and for Android
tablets from Google Play.

The 4f Studio application supports writing structured derivations on computers.
The system includes an electronic notebook, where one can write mathematical
text, create and edit structured derivations and make graphs of functions, geometric
figures and mathematical tables. The Four Ferries web pages (www.fourferries.fi)
give more information about 4f Studio. There you can also find tutorials about
structured derivations and digital mathematics education as well as educational
videos and information about research and development of structured derivations
and practical experiences of the use of the method on different levels of education.
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Structured derivations is a method that supports the construction, pre-
sentation and understanding of mathematical arguments. The method 
works equally well for mathematical proofs and algebraic and arithmetic 
calculations as for geometric constructions and general problem solving, 
and it is useful whenever the presentation of a solution requires several 
consecutive steps. It has been used at different levels of mathematics, from lower 
secondary school to university level and research. The method is based 
on a fixed form to present mathematical arguments and the use of simple 
logical notation in the arguments. The fixed form makes it easier to to un-
derstand proofs and calculations and to check that they are correct. The aim 
of this guide is to show how structured derivations can be used in upper 
secondary school level mathematics education. The method is described 
with examples that step by step introduce new features and concepts.  
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