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Being able to explain the process of solving a mathematical problem is essential
to learning mathematics. Unfortunately, students are not used to justifying their
solutions as emphasis in the classroom is usually put on the final answer. In this
paper, we describe how students can become used to explicate their thinking
while solving a problem or writing a proof in a structured and standard format
using structured derivations. We also present the results from an analysis of
upper secondary school students’ argumentation skills from using this approach
in a course on logic and number theory. Our findings suggest that the structured
derivations format is appreciated by the students and can help promote their
Jjustification skills.

BACKGROUND

“Mathematics is not just about identifying the truth but also about proving that
this is the case” (Almeida, 1995, p. 171). Learning to argue about mathematical
ideas and justifying solutions is fundamental to truly understanding mathematics
and learning to think mathematically.

The National Council of Teaching Mathematics (NCTM) issues
recommendations for school mathematics at different levels. In the current
documents (NCTM, 2008), communication, argumentation and justification
skills are recognized as central to the learning of mathematics at all levels.

According to Sfard (Sfard, 2001), thinking can be seen as a special case of
intrapersonal communication: “ [o]ur thinking is clearly a dialogical endeavor
where we inform ourselves, we argue, we ask questions, and we wait for our
own response [...] becoming a participant in mathematical discourse is
tantamount to learning to think in a mathematical way” (p.5). Although it is
important to be able to communicate mathematical ideas orally, documenting
the thinking in writing can be even more efficient for developing understanding
(Albert, 2000).

Justifications are not only important to the student, but also to the teacher, as the
explanations (not the final answer) make it possible for the teacher to study the
growth of mathematical understanding (Pirie & Kieren, 1992). Using arguments
such as “Because my teacher said so” or “I can see it” is insufficient to reveal
their reasoning (Dreyfus, 1999). A brief answer such as “26/65=2/5" does not
tell the reader anything about the student’s understanding. What if he or she has
“seen” that this is the result after simply removing the number six (6)?

Nevertheless, quick and correct answers are often valued more in the classroom
than the thinking that resulted in those answers. It is common for students to be



required to justify their solution and explain their thinking only when they

have made an error — the need to justify correctly solved problems is usually de-
emphasized (Glass & Maher, 2004). As a result, students rarely provide
explanations in mathematics class and are not used to justify their answers

(Cai et al., 1996). Consequently, the reasoning that drives the solution forward
remains implicit (Dreyfus, 1999; Leron, 1983).

In this paper, we will present an approach for doing mathematics carefully,
which aids students in documenting their solutions and their thinking process.
We will also present the results from the analysis of students’ justifications from
a course using this approach. The aim is to investigate the following questions:

* How does the use of structured derivations affect students’ justifications?
* What advantages and drawbacks do students experience when using
structured derivations?
STRUCTURED DERIVATIONS

Structured derivations (Back et al., 1998; Back & von Wright, 1999; Back et al.,
2008) is a further development of Dijkstra's calculational proof style, where
Back and von Wright have added a mechanism for doing subderivations and for
handling assumptions in proofs. With this extension, structured derivations can
be seen as an alternative notation for Gentzen like proofs.

In the following, we illustrate the format by briefly discussing an example where
we want to prove that x*> x when x > 1.

. Prove that x* > x, when
- x>1

|- X’ >x

{ Add —x to both sides }

2
x-x>0

{ Factorize }
x(x-1)>0

Both x and x-1 are positive according to assumption. Therefore their
. pe g p
product is also positive. }

T

The derivation starts with a description of the problem (“Prove that x*> x”),
followed by a list of assumptions (here we have only one: x > 1). The turnstile
(|]-) indicates the beginning of the derivation and is followed by the start term
(x> x). In this example, the solution is reached by reducing the original term
step by step. Each step in the derivation consists of two terms, a relation and an
explicit justification for why the first term is transformed to the second one.
Justifications are written inside curly brackets.



Another key feature of this format is the possibility to present derivations at
different levels of detail using subderivations, but as these are not the focus of
this paper, we have chosen not to present them here. For information on
subderivations and a more detailed introduction to the format, please see the
book and articles by Back et al.

Why Use in Education?

As each step in the solution is justified, the final product contains a
documentation of the thinking that the student was engaged in while completing
the derivation, as opposed to the implicit reasoning mentioned by Dreyfus
(1999) and Leron (1983). The explicated thinking facilitates reading and
debugging both for students and teachers.

Moreover, the defined format gives students a standardized model for how
solutions and proofs are to be written. This can aid in removing the confusion
that has commonly been the result of teachers and books presenting different
formats for the same thing (Dreyfus, 1999). A clear and familiar format has the
potential to function as mental support, giving students belief in their own skills
to solve the problem. As solutions and proofs look the same way using
structured derivations, the traditional “fear” of proof might be eased.
Furthermore, the use of subderivations renders the format suitable for new types
of assignments and self-study material, as examples can be made self-
explanatory at different detail levels.

STUDY SETTINGS

The data were collected during an elective advanced mathematics course on
logic and number theory (about 30 hours) at two upper secondary schools in
Turku, Finland during fall 2007. Twenty two (22) students participated in the
course (32 % girls, 68 % boys). The students were on their final study year.

For this study, we have used a pre course survey including a pretest, three course
exams and a mid and post course survey. The pretest included five exercises,
which students were to solve. They were also asked explicitly to justify their
results. The surveys included both multiple choice questions and open-ended
questions for students to express their opinions in their own words.

For each course exam, we have manually gone through and analyzed three
assignment solutions per student, giving us a total of 198 analyzed solutions (22
students * 3 exams * 3 solutions). In the analysis, we focused on two things: the
types of justification related errors (JRE) and the frequency of these.
RESULTS AND DISCUSSION

Justification related errors in the exams

The analysis revealed the following three JRE types:

* Missing justification. A justification between two terms in the derivation is
missing.



* [nsufficient or incorrect justification. E.g. using the wrong name of a rule
or not being precise enough, for instance, writing “logic” as the justification,
when a more detailed explanation would have been needed.

* Errors related to the use of mathematical language. Characterized by the
student not being familiar with the mathematical terminology. For instance,
one student wrote “solve the equation” when actually multiplying two
binomials or simplifying an inequality.

The pre course survey indicated that the students had quite varied justification
skills. Over half of the students disagreed with the statement “I usually justify
my solutions carefully” and an analysis of the pretests showed that many
students did do quite poorly on the justification part, especially for the two most
difficult exercises (over 50 % of the students gave an incorrect or no
explanation). Also, the nature of the justifications was rather mixed: whereas
some gave detailed explanations, some only wrote a couple of words giving an
indication of what they had done.

The exam assignments included surprisingly few JREs taking into account the
skills exhibited by students in the pretest. The overall frequency of JREs stayed
rather constant throughout the course: a JRE was found in 15-20 % of the 66
assignments analyzed for each exam. Most students who made a JRE of a
specific type, made only one such error in the nine assignments. Note that this is
one erroneous justification comment throughout all three exams. Only six
students made more than one JRE of a specific type.

Missing justifications were the most common JRE in the second exam (11 % of
students), whereas students did mainly insufficient/ incorrect justifications in the
first and third exam (9-12 %). Errors related to mathematical language stayed
fairly constant in all exams (3-6 %).

The low number of missing justifications in the first exam is understandable
given the character of the assignments (short, familiar topics). In the second
exam, new topics had been introduced, resulting in a larger number of missing
justifications. This however decreased in the third exam, suggesting that
students had got used to always justifying each step. The slightly increased
number of insufficient/ incorrect justifications in the third exam can be
explained by the third exam being the most difficult one. The main point here is
to note that the overall frequency of JREs was low.

Survey results

The mid and post course surveys revealed students’ perceived benefits and
drawbacks of using structured derivations. Our analysis showed that 77 % of the
students stated that the solutions were much clearer than before. Further another
77 % suggested an increased understanding for doing mathematics.'

' The quotations have been freely translated from Swedish by one of the authors.



“At first I found it completely unnecessary to write this way, but now I think it is
a very good way, because now I understand exactly how all assignments are done.”

“I actually liked this course (rare when it comes to mathematics), structured
derivations made everything much clearer. Earlier, I basically just wrote something
except real justifications. Sometimes I haven’t known what I’ve been doing.”

The main drawbacks, according to the students, were that the format made
solutions longer (32 % of students) and more time consuming (55 % of
students). This is understandable, as the explicit justifications do increase the
length of the solutions and also take some time to write down. The justifications,
however, were considered a source of increasing understanding, thus the time
consumption might be regarded something positive after all. In fact, we believe
it is a large benefit, as it helps promote quality instead of quantity.

The students also noted that structured derivations required more thinking.
Moreover, they recognized that the format helped them make fewer errors partly
because they had to let it take time to write down the solutions.

“In this course the calculations become more careful since you take the time to
think every step through.”

“[Using the traditional format, you] can more easily make mistakes when you
calculate so fast.”

Another interesting finding was that students seemed to believe that
justifications were not part of the solutions when doing mathematics in the
traditional format. Describing the traditional way they do mathematics, they e.g.
noted:

“You don’t have to explain what you do!... It’s enough to get a reasonable answer.”
“You lack explanations for why you do things the way you do.”

A final remarkable observation was the lack of completely negative comments.
Comments starting out in a negative tone (“It takes much time”, “I don’t like all
the writing”), all ended up positive (““... but I understand what I do better”,
“...but I make fewer errors”). In our opinion, this is a promising finding.

CONCLUDING REMARKS

The format and results presented in this paper, suggest that it is possible to get
students to start justifying their solutions better. If you want to do something
carefully, it will take some time and effort. “Quality before quantity” is
something that, in our opinion, should be emphasized also in mathematics
education.

The focus on also explaining solutions raises a new challenge - how do we get
students to choose an appropriate level of detail for their justifications. While
talented students may feel comfortable using “simplify” as a justification, this
might not be sufficient for weaker students. A certain level of detail thus needs



to be enforced at least at the beginning of a new topic, in order to ensure that
students truly are learning the topic at hand.

Another question raised that merits further investigations is what type of
justification should be preferred (name of a mathematical rule, natural language
description of the process, 1.e. what is done in the step)? The impact of the type
of justification (“simplify” compared to a longer description) on the quality/
correctness of a solution also deserves attention.
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