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Being able to explain the process of solving a mathematical problem is essential 
to learning mathematics. Unfortunately, students are not used to justifying their 
solutions as emphasis in the classroom is usually put on the final answer. In this 
paper, we describe how students can become used to explicate their thinking 
while solving a problem or writing a proof in a structured and standard format 
using structured derivations. We also present the results from an analysis of 
upper secondary school students’ argumentation skills from using this approach 
in a course on logic and number theory. Our findings suggest that the structured 
derivations format is appreciated by the students and can help promote their 
justification skills.  

BACKGROUND 
“Mathematics is not just about identifying the truth but also about proving that 
this is the case” (Almeida, 1995, p. 171). Learning to argue about mathematical 
ideas and justifying solutions is fundamental to truly understanding mathematics 
and learning to think mathematically.  
The National Council of Teaching Mathematics (NCTM) issues 
recommendations for school mathematics at different levels. In the current 
documents (NCTM, 2008), communication, argumentation and justification 
skills are recognized as central to the learning of mathematics at all levels.  
According to Sfard (Sfard, 2001), thinking can be seen as a special case of 
intrapersonal communication: “ [o]ur thinking is clearly a dialogical endeavor 
where we inform ourselves, we argue, we ask questions, and we wait for our 
own response […] becoming a participant in mathematical discourse is 
tantamount to learning to think in a mathematical way” (p.5). Although it is 
important to be able to communicate mathematical ideas orally, documenting 
the thinking in writing can be even more efficient for developing understanding 
(Albert, 2000).  
Justifications are not only important to the student, but also to the teacher, as the 
explanations (not the final answer) make it possible for the teacher to study the 
growth of mathematical understanding (Pirie & Kieren, 1992). Using arguments 
such as “Because my teacher said so” or “I can see it” is insufficient to reveal 
their reasoning (Dreyfus, 1999).  A brief answer such as “26/65=2/5” does not 
tell the reader anything about the student’s understanding. What if he or she has 
“seen” that this is the result after simply removing the number six (6)?  
Nevertheless, quick and correct answers are often valued more in the classroom 
than the thinking that resulted in those answers. It is common for students to be 



  
required to justify their solution and explain their thinking only when they 
have made an error – the need to justify correctly solved problems is usually de-
emphasized (Glass & Maher, 2004). As a result, students rarely provide 
explanations in mathematics class and are not used to justify their answers 
(Cai et al., 1996). Consequently, the reasoning that drives the solution forward 
remains implicit (Dreyfus, 1999; Leron, 1983).  
In this paper, we will present an approach for doing mathematics carefully, 
which aids students in documenting their solutions and their thinking process. 
We will also present the results from the analysis of students’ justifications from 
a course using this approach. The aim is to investigate the following questions: 

• How does the use of structured derivations affect students’ justifications? 
• What advantages and drawbacks do students experience when using 

structured derivations?  

STRUCTURED DERIVATIONS 
Structured derivations (Back et al., 1998; Back & von Wright, 1999; Back et al., 
2008) is a further development of Dijkstra's calculational proof style, where 
Back and von Wright have added a mechanism for doing subderivations and for 
handling assumptions in proofs. With this extension, structured derivations can 
be seen as an alternative notation for Gentzen like proofs.   
In the following, we illustrate the format by briefly discussing an example where 
we want to prove that x2 > x when x > 1.  
• Prove that x2 > x, when 
-  x > 1 
||- x2  > x 
≡ { Add –x to both sides } 

 x2 - x > 0 
≡ { Factorize } 

 x(x - 1) > 0 
≡ { Both x and x-1 are positive according to assumption. Therefore their    

   product is also positive. }   

T 
The derivation starts with a description of the problem (“Prove that x2 > x”), 
followed by a list of assumptions (here we have only one: x > 1). The turnstile 
(||-) indicates the beginning of the derivation and is followed by the start term 
(x2 > x). In this example, the solution is reached by reducing the original term 
step by step. Each step in the derivation consists of two terms, a relation and an 
explicit justification for why the first term is transformed to the second one. 
Justifications are written inside curly brackets.  



  
Another key feature of this format is the possibility to present derivations at 
different levels of detail using subderivations, but as these are not the focus of 
this paper, we have chosen not to present them here. For information on 
subderivations and a more detailed introduction to the format, please see the 
book and articles by Back et al. 
Why Use in Education? 
As each step in the solution is justified, the final product contains a 
documentation of the thinking that the student was engaged in while completing 
the derivation, as opposed to the implicit reasoning mentioned by Dreyfus 
(1999) and Leron (1983). The explicated thinking facilitates reading and 
debugging both for students and teachers.  
Moreover, the defined format gives students a standardized model for how 
solutions and proofs are to be written. This can aid in removing the confusion 
that has commonly been the result of teachers and books presenting different 
formats for the same thing (Dreyfus, 1999). A clear and familiar format has the 
potential to function as mental support, giving students belief in their own skills 
to solve the problem. As solutions and proofs look the same way using 
structured derivations, the traditional “fear” of proof might be eased. 
Furthermore, the use of subderivations renders the format suitable for new types 
of assignments and self-study material, as examples can be made self-
explanatory at different detail levels. 

STUDY SETTINGS 
The data were collected during an elective advanced mathematics course on 
logic and number theory (about 30 hours) at two upper secondary schools in 
Turku, Finland during fall 2007. Twenty two (22) students participated in the 
course (32 % girls, 68 % boys). The students were on their final study year. 
For this study, we have used a pre course survey including a pretest, three course 
exams and a mid and post course survey. The pretest included five exercises, 
which students were to solve. They were also asked explicitly to justify their 
results. The surveys included both multiple choice questions and open-ended 
questions for students to express their opinions in their own words.  
For each course exam, we have manually gone through and analyzed three 
assignment solutions per student, giving us a total of 198 analyzed solutions (22 
students * 3 exams * 3 solutions). In the analysis, we focused on two things: the 
types of justification related errors (JRE) and the frequency of these. 

RESULTS AND DISCUSSION 
Justification related errors in the exams 
The analysis revealed the following three JRE types: 
• Missing justification. A justification between two terms in the derivation is 

missing. 



  
• Insufficient or incorrect justification. E.g. using the wrong name of a rule 

or not being precise enough, for instance, writing “logic” as the justification, 
when a more detailed explanation would have been needed.  

• Errors related to the use of mathematical language. Characterized by the 
student not being familiar with the mathematical terminology. For instance, 
one student wrote “solve the equation” when actually multiplying two 
binomials or simplifying an inequality.  

The pre course survey indicated that the students had quite varied justification 
skills. Over half of the students disagreed with the statement “I usually justify 
my solutions carefully” and an analysis of the pretests showed that many 
students did do quite poorly on the justification part, especially for the two most 
difficult exercises (over 50 % of the students gave an incorrect or no 
explanation). Also, the nature of the justifications was rather mixed: whereas 
some gave detailed explanations, some only wrote a couple of words giving an 
indication of what they had done.  
The exam assignments included surprisingly few JREs taking into account the 
skills exhibited by students in the pretest. The overall frequency of JREs stayed 
rather constant throughout the course: a JRE was found in 15-20 % of the 66 
assignments analyzed for each exam. Most students who made a JRE of a 
specific type, made only one such error in the nine assignments. Note that this is 
one erroneous justification comment throughout all three exams. Only six 
students made more than one JRE of a specific type.  
Missing justifications were the most common JRE in the second exam (11 % of 
students), whereas students did mainly insufficient/ incorrect justifications in the 
first and third exam (9-12 %). Errors related to mathematical language stayed 
fairly constant in all exams (3-6 %).  
The low number of missing justifications in the first exam is understandable 
given the character of the assignments (short, familiar topics). In the second 
exam, new topics had been introduced, resulting in a larger number of missing 
justifications. This however decreased in the third exam, suggesting that 
students had got used to always justifying each step. The slightly increased 
number of insufficient/ incorrect justifications in the third exam can be 
explained by the third exam being the most difficult one. The main point here is 
to note that the overall frequency of JREs was low.  
Survey results 
The mid and post course surveys revealed students’ perceived benefits and 
drawbacks of using structured derivations. Our analysis showed that 77 % of the 
students stated that the solutions were much clearer than before. Further another 
77 % suggested an increased understanding for doing mathematics.1 

                                         
1 The quotations have been freely translated from Swedish by one of the authors. 



  
“At first I found it completely unnecessary to write this way, but now I think it is 
a very good way, because now I understand exactly how all assignments are done.” 

“I actually liked this course (rare when it comes to mathematics), structured 
derivations made everything much clearer. Earlier, I basically just wrote something 
except real justifications. Sometimes I haven’t known what I’ve been doing.” 

The main drawbacks, according to the students, were that the format made 
solutions longer (32 % of students) and more time consuming (55 % of 
students). This is understandable, as the explicit justifications do increase the 
length of the solutions and also take some time to write down. The justifications, 
however, were considered a source of increasing understanding, thus the time 
consumption might be regarded something positive after all. In fact, we believe 
it is a large benefit, as it helps promote quality instead of quantity.  
The students also noted that structured derivations required more thinking. 
Moreover, they recognized that the format helped them make fewer errors partly 
because they had to let it take time to write down the solutions.  

“In this course the calculations become more careful since you take the time to 
think every step through.” 

“[Using the traditional format, you] can more easily make mistakes when you 
calculate so fast.”  

Another interesting finding was that students seemed to believe that 
justifications were not part of the solutions when doing mathematics in the 
traditional format. Describing the traditional way they do mathematics, they e.g. 
noted: 

“You don’t have to explain what you do!… It’s enough to get a reasonable answer.” 

“You lack explanations for why you do things the way you do.”  

A final remarkable observation was the lack of completely negative comments. 
Comments starting out in a negative tone (“It takes much time”, “I don’t like all 
the writing”), all ended up positive (“… but I understand what I do better”, 
“…but I make fewer errors”). In our opinion, this is a promising finding. 

CONCLUDING REMARKS 
The format and results presented in this paper, suggest that it is possible to get 
students to start justifying their solutions better. If you want to do something 
carefully, it will take some time and effort. “Quality before quantity” is 
something that, in our opinion, should be emphasized also in mathematics 
education.  
The focus on also explaining solutions raises a new challenge - how do we get 
students to choose an appropriate level of detail for their justifications. While 
talented students may feel comfortable using “simplify” as a justification, this 
might not be sufficient for weaker students. A certain level of detail thus needs 



  
to be enforced at least at the beginning of a new topic, in order to ensure that 
students truly are learning the topic at hand.  
Another question raised that merits further investigations is what type of 
justification should be preferred (name of a mathematical rule, natural language 
description of the process, i.e. what is done in the step)? The impact of the type 
of justification (“simplify” compared to a longer description) on the quality/ 
correctness of a solution also deserves attention.  
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